http://www.JobSpectrum.org/job_organic.html Organic Chemistry - Career Brief |
. . . Is all around us Beyond our bodies' DNA, peptides, proteins, and enzymes, organic compounds are all around us. They are central to the economic growth of the U.S., in industries such as the rubber, plastics, fuel, pharmaceutical, cosmetics, detergent, coatings, dyestuffs, and agrichemicals industries. The very foundations of biochemistry, biotechnology, and medicine are built on organic compounds and their role in life processes. Most all of the modern, high tech materials are composed, at least in part, of organic compounds. Clearly, organic chemistry is critically important to our high standard of living. Organic chemists at all degree levels are found in all those industries that depend on R&D, working on projects from fundamental discovery to highly applied product development. The foundation of the pharmaceutical industry is the large pool of highly skilled organic chemists. For example, nature may provide a molecule such as a complex antibiotic, an antitumor agent, or a replacement for a hormone such as insulin; organic chemists determine the structure of this newly discovered molecule and then modify it to enhance the desired activity and specificity of action, while decreasing undesired side effects. Indeed, organic chemists have produced a wonderful myriad of highly successful products to fight human diseases. There is tremendous excitement and challenge in synthesizing a molecule never before made synthetically or found in nature. Tailoring the properties of that molecule via chemical synthesis to produce beneficial effects to meet the needs of the present and future human existence is both challenging and rewarding. When asked to comment about his work, John Hyatt, senior research associate at Eastman Chemical Company said, "I think of new ways to solve old problems." Hyatt specializes in organic chemistry research and the development of naturally-occurring compounds. He looks for methods to synthesize organic compounds which will prove useful in medicine, nutrition, and materials science. Often these compounds already are known to be of significant commercial value; Hyatt's job is to develop new and improved synthetic routes and to find more efficient methods for the isolation and purification of naturally occurring substances of commercial value. Hyatt also designs and carries out synthesis of isotopically-tagged versions of reasonably complex target molecules. His work is just one example of the wide variety of exciting opportunities inherent in organic chemistry. . . . Is about challenges and success Organic chemists often say that in addition to making the work interesting, the challenge of finding a process or product that works in the midst of numerous ideas that do not pan out is often a learning experience. Kenetha Stanton, associate research scientist at Procter & Gamble says, "Often, we either can't make the compound we want, or a compound that we do make doesn't have the activity that we had envisioned. When this occurs, we've at least discovered that a certain class of compounds won't work for us. We can move on and know that we don't need to look at that particular group any more. That allows us to focus our time and energy elsewhere. In that sense, what seems like a failure is really a kind of success in disguise." . . . Goes inside and outside the lab Senior principal scientist Joel Barrish at Bristol-Myers Squibb does some of his own laboratory work in cardiovascular and immunology research when possible. However, most of his day is spent carrying out those duties associated with his role as group/project leader in drug discovery research. These responsibilities include coordinating the synthetic chemistry efforts of chemists in his group and collaborating with professionals working on the project in areas outside of his group such as computer-aided design, X-ray crystallography, biochemistry, metabolism and pharmacokinetics, process research chemistry, and regulatory affairs. Barrish says that his Ph.D. in chemistry and seven years of work experience in this field prepared him for his current position. He comments, "I would like to continue on the managerial/scientific track in industry, leading drug discovery programs." Many organic chemists, such as Hyatt and Barrish, choose to remain active in the technical end of chemistry. Others apply their knowledge and skills outside the laboratory holding positions that include those in sales, marketing, and law. Many organic chemists work in academia, holding positions that include undergraduate and graduate teaching and research. The academic area provides the opportunity for the very best to explore new areas of organic research. McDow-Dunham attended law school while working as a scientist at P&G and is now pursuing her interests in patent law with the company. "I like the idea of being an advocate for scientists." Her goal as a patent attorney is to work with scientists to obtain proprietary protection for the compounds that they design. She adds, "My background in organic chemistry will help me work with other scientists in my new role because I know how to talk their language." This is an important aspect of organic chemistry; its central nature can open many alternative career paths. . . . Is a puzzle leading to new experiences David Eickhoff, associate scientist at Procter & Gamble, makes this analogy of his work: It is wanting to get from New York to Los Angeles. "There are an infinite number of routes. Some are better than others because of things out of your control, such as an inaccessible bridge along the way. So you back up and find another route in order to complete the journey." Eickhoff continues, "Everyday is a new experience working in organic
chemistry. There are well-defined rules, and there's just enough information
that you're not just spinning your wheels. But it's not completely mapped
out. There's always something new. Organic chemistry is a wonderful blend
of what's known, what's not yet known, and how to apply this information
to discover new knowledge. There's enough not yet known to keep it interesting
and full of opportunity." WORK DESCRIPTION WORKING CONDITIONS Bachelor's degree chemists will spend most of their time working at the bench. However, time will also be spent with data recording, report writing, interactions with people and disciplines outside your team. Computers greatly aid the collection, recording, managing, and analyzing of data, and even report writing. More and more, computers bring the outside world's technical literature right into the laboratory, and they also are invaluable in providing computer aided design techniques for constructing new molecules and modifying existing ones. There will be no shortage of the latest in instrumentation to facilitate the work, both in industry and in academia. PLACES OF EMPLOYMENT PERSONAL CHARACTERISTICS EDUCATION AND TRAINING A benefit provided by most companies is paid tuition for the bachelor's or master's chemist who wishes to obtain a higher degree while working full-time. What is learned while pursuing that higher degree, coupled with the practical job experience, can be the key to more rapid advancement in responsibility and pay. JOB OUTLOOK Teaching opportunities for Ph.D. chemists each year are available, but the competition is quite stiff. Most research universities and liberal arts colleges require the Ph.D. degree. However, some four- and two-year colleges hire master's level chemists for teaching and limited research opportunities. There are more than 1300 biotechnology firms and they, along with large companies, are hiring all degree levels of organic chemists. Government laboratories also present opportunity for all levels of organic chemists. SALARY RANGE FOR MORE INFORMATION WHAT YOU CAN DO NOW
|